Temperature measurement by means of fiber specklegram sensors (FSS)

Medición de temperatura mediante specklegramas de fibra óptica (FSS)

By: L. F. Castaño, L. C. Gutierrez, J. C. Quijano, J. A. Herrera-Ramírez, A. Hoyos, F. J. Vélez, V. H. Aristizabal, L. C. Da Silva-Núnez, J. A. Gómez

Main Information

Volume:
Vol.51-N3 / 2018 - Ordinario
Section:
Sensors and Photonic Devices
Pages:
50306:1-7
DOI:
http://doi.org/10.7149/OPA.51.3.50306
Type:
Research papers / Trabajos de investigación
Language:
Spanish
Attachments:
Keywords:
Fiber Specklegram Sensors, Thermal Perturbations, Optical Fiber sensors.

Specklegramas de Fibra Óptica, Perturbaciones Térmicas, Sensores de Fibra Óptica.
PDF file download

Abstract

In this work, a technique for temperature measurement using non-holographic fiber optic specklegrams is demonstrated experimentally. In the experimental scheme, a 632 nm laser source is coupled to a mono-multi-mono mode fiber arrangement, which produces a filtering effect that is used as an optical transduction mechanism. Thermal perturbations between 25°C and 60°C were applied to the fiber array, finding a linear response of the system and a sensitivity superior to the previously reported for studies in similar systems. Due to the low cost and simplicity of the technique, these results are of great interest for the implementation of this type of optical fiber sensors in a large number of engineering applications.


En este trabajo, una técnica para la medición de temperatura mediante specklegramas de fibra óptica no-holográficos es demostrada experimentalmente. En el esquema experimental, una fuente láser de 632 nm es acoplada a un arreglo de fibras mono-multi-mono modo, lo cual produce un efecto de filtrado que es usado como mecanismo de transducción óptica. Perturbaciones térmicas entre los 25°C y los 60°C fueron aplicadas al arreglo de fibras, encontrando una respuesta lineal del sistema y una sensibilidad superior a las reportadas anteriormente para estudios basados en sistemas similares. Debido al bajo costo y simplicidad de la técnica, estos resultados son de gran interés para la implementación de este tipo de sensores de fibra óptica en una gran cantidad de aplicaciones de ingeniería.

References

[1] K. J. Gasvik, Optical Metrology, 3rd ed. Chichester, England: John Wiley & Sons Ltd, (2002).

[2] Y. Y. Hung, "Displacement and strain measurement," in Speckle metrology, R. K. Erf, Ed. New York: Academic Press, Inc., pp. 51-71 (1978).

[3] R. Jones and C. Wykes, Holographic and Speckle Interferometry. Cambridge University Press, (1989).

[4] B. E. a Saleh and M. C. Teich, Fundamentals of Photonics, vol. 5. New York, USA: John Wiley & Sons, Inc., (1991).

[5] F. T. S. Yu and S. Yin, Fiber Optic Sensors. New York: Marcel Dekker, Inc., (2002).

[6] B. Wang, C. Huang, R. Guo, and F. T. S. Yu, "A novel fiber chemical sensor using inner-product multimode fiber speckle fields," in Proceedings of SPIE - The International Society for Optical Engineering, p. 299 (2003).

[7] Y. Liu and L. Wei, "Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers," Appl. Opt., 46, pp. 2516-2519 (2007).

[8] I. P. Johnson, D. J. Webb, K. Kalli, M. C. J. Large, and A. Argyros, "Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre,", 7714, p. 77140D (2010).

[9] D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, "High-temperature sensing with tapers made of microstructured optical fiber," IEEE Photonics Technol. Lett., 18, pp. 511-513, (2006).

[10] Y. Peng, J. Hou, Z. Huang, and Q. Lu, "Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber," Appl. Opt., 51, p. 6361, (2012).

[11] S. Wu, S. Yin, and F. T. S. Yu, "Sensing with fiber specklegrams," Appl. Opt., 30, p. 4468, (1991).

[12] F. T. S. Yu, J. Zhang, S. Yin, and P. B. Ruffin, "Analysis of a fiber specklegram sensor by using coupled-mode theory," Appl. Opt., 34, p. 3018, (1995).

[13] F. T. S. Yu, S. Yin, J. Zhang, and R. Guo, "Application of a fiber-speckle hologram to fiber sensing," Appl. Opt., vol. 33, p. 5202, (1994).

[14] J.A. Gomez, H. Lorduy G., and Á. Salazar, "Improvement of the dynamic range of a fiber specklegram sensor based on volume speckle recording in photorefractive materials," Opt. Lasers Eng., vol. 49, no. 3, pp. 473-480 (2011).

[15] J. A. Gómez, H. Lorduy G., and Á. Salazar, "Influence of the volume speckle on fiber specklegram sensors based on four-wave mixing in photorefractive materials," Opt. Commun., 284, pp. 1008-1014, (2011).

[16] J. A. Gómez and Á. Salazar, "Self-correlation fiber specklegram sensor using volume characteristics of speckle patterns," Opt. Lasers Eng., 50, pp. 812-815, (2012)

[17] A. Malki, R. Gafsi, L. Michel, M. Labarrère, and P. Lecoy, "Impact and vibration detection in composite materials by using intermodal interference in multimode optical fibers," Appl. Opt., 35, p. 5198, (1996).

[18] B. Wang, R. Guo, S. Yin, and F. T. S. Yu, "Chemical Sensing with Hetero-Core Fiber Specklegram," J. Hologr. Speckle, 1, pp. 53-57, (2004).

[19] F. T. S. Yu, M. Wen, S. Yin, and C.-M. Uang, "Submicrometer displacement sensing using inner-product multimode fiber speckle fields," Appl. Opt., 32, p. 4685, (1993).

[20] E. Fujiwara, Y. T. Wu, and C. K. Suzuki, "Vibration-based specklegram fiber sensor for measurement of properties of liquids," Opt. Lasers Eng., 50, pp. 1726?1730, (2012).

[21] J. Li, H. Cai, J. Geng, R. Qu, and Z. Fang, "Specklegram in a multiple-mode fiber and its dependence on longitudinal modes of the laser source," Appl. Opt., 46, p. 3572, (2007).

[22] Y. Wang, H. Cai, R. Qu, Z. Fang, E. Marin, and J.-P. Meunier, "Specklegram in a grapefruit fiber and its response to external mechanical disturbance in a single-multiple-single mode fiber structure," Appl. Opt., 47, p. 3543, (2008).

[23] A. Kumar, R. K. Varshney, S. Antony C, and P. Sharma, "Transmission characteristics of SMS fiber optic sensor structures," Opt. Commun., 219, pp. 215-219, (2003).

[24] E. Fujiwara, Y. T. Wu, M. F. M. dos Santos, E. A. Schenkel, and C. K. Suzuki, "Development of a tactile sensor based on optical fiber specklegram analysis and sensor data fusion technique," Sensors Actuators A Phys., 263, pp. 677-686, (2017).

[25] L. Rodriguez-Cobo, M. Lomer, and J.-M. Lopez-Higuera, "Fiber Specklegram-Multiplexed Sensor," J. Light. Technol., 33, , pp. 2591-2597, (2015).

[26] E. Fujiwara, M. F. Marques dos Santos, and C. K. Suzuki, "Optical fiber specklegram sensor analysis by speckle pattern division," Appl. Opt., 56, no. 6, p. 1585, (2017).

[27] N. Darío Gómez and J. A. Gómez, "Effects of the speckle size on non-holographic fiber specklegram sensors," Opt. Lasers Eng., 51, pp. 1291-1295, (2013).

[28] V. H. Aristizabal, A. Hoyos, E. Rueda, N. D. Gomez, and J. A. Gomez, "Effect of wavelength on metrological characteristics of non-holographic fiber specklegram sensor," Photonic Sensors, 5, (2015).

[29] V. H. Arístizabal, F. J. Vélez, E. Rueda, N. D. Gómez, and J. A. Gómez, "Numerical modeling of fiber specklegram sensors by using finite element method (FEM)," Opt. Express, 24, pp. 27225-27238, (2016).

[30] Z. Zhang and F. Ansari, "Fiber-optic laser speckle-intensity crack sensor for embedment in concrete," Sensors Actuators A Phys., 126, , pp. 107-111, (2006).

[31] L. Rodriguez-Cobo, M. Lomer, and J. M. Lopez-Higuera, "Fiber specklegram sensors sensitivities at high temperatures," in Proceedings of SPIE - The International Society for Optical Engineering, p. 96347, (2015).

[32] G. T. Mase and G. E. Mase, Continuum for Engineers, 2 Ed. Boca Raton: CRC Press, (1999).

[33] M. Bass, E. W. Van-Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics, Vol. II: Devices, Measurements and Properties, 2nd ed. The United States of America: McGraw-Hill, Inc., (1995).

[34] V. H. Aristizabal, F. J. Velez, and P. Torres, "Numerical model and analysis of optical fibers with internal electrodes," Rev. Colomb. Física, 38, , pp. 173-176, (2006).

[35] K. Masuda, A. Tate, M. Ishida, T. Suzuki, and H. Tsuda, "Beam steering type of 1 : 4 optical switch using thermo-optic effect," Opt. Rev., 13, pp. 184-188, (2006).