Determining the desert dust aerosol presence in the Mantaro Valley, Peru

Determinación de la presencia de aerosoles de polvo desértico en el Valle del Mantaro, Perú

By: I. Y. Platero, R. Estevan, A. Moya, R. A. Yuli

Main Information

Vol.51-N3 / 2018 - Ordinario
Atmospheric Optics
Research papers / Trabajos de investigación
AOD, sunphotometer, AERONET, desert dust.

AOD, fotómetro solar, AERONET, polvo desértico.
PDF file download


Since March 19, 2015, a sunphotometer CIMEL CE-318T has been installed in the Huancayo Observatory, belonging to the Geophysical Institute of Peru. Aerosol Optical Depth at 440 nm (τ440) and the Ångström Exponent (α) derived from columnar aerosol sun-photometer measurement, based on Aerosol Robotic Network (AERONET) products, has been used for aerosols classification. The used AERONET dataset correspond to quality Level 2.0. A reliable identification of desert dust events has been possible based on above mentioned parameters. A total of 5 days and 10 hours have been identified as desert dust events based on AERONET dataset and the air mass backtrajectories employing the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT). Simulations carried out with the Weather Research and Forecasting (WRF) Model has been used to corroborate the desert dust events. The most intense event was recorded in December 27, 2016, with a maximum AOD value of 0.32 at 12:03 GMT. It has been shown that the major contribution to AOD on days identified as desert dust events, corresponds to desert dust aerosols. This is the first report for Peru, of desert dust aerosols transport from the Peruvian coastal desert to the central Andes, specifically to the Mantaro Valley.

Desde el 19 de marzo de 2015, se ha instalado un fotómetro solar del tipo CIMEL CE-318T en el Observatorio de Huancayo, perteneciente al Instituto Geofísico del Perú. El Espesor Óptico por Aerosoles a 440 nm (τ440) y el Exponente de Ångström (α) derivados de las mediciones columnares del fotómetro solar, basados en los productos de la Red Robótica de Aerosoles (AERONET), se han utilizado para la clasificación de los aerosoles. El conjunto de datos de utilizados corresponde al nivel de calidad 2.0 de AERONET. La identificación confiable de los eventos de polvo desértico ha sido posible en base a los parámetros mencionados anteriormente. Se identificaron un total de 5 días y 10 horarios como eventos de polvo desértico, basados en los datos de AERONET y las retrotrayectorias de masas de aire empleando el Modelo de Trayectoria Integrada Lagrangiana de Partícula Híbrida (HYSPLIT). Las simulaciones llevadas a cabo con el modelo de investigación y pronóstico del tiempo (WRF) se ha utilizado para corroborar los eventos de polvo desértico. El evento más intenso se registró el 27 de diciembre de 2016, con un valor máximo de AOD de 0.32 a las 12:03 GMT. Se ha evidenciado que la principal contribución al EOA en los días identificados como eventos de polvo desértico corresponde a los aerosoles de polvo desérticos. Este es el primer reporte para Perú, sobre el transporte de aerosoles de polvo desértico desde el desierto costero peruano hasta los Andes centrales, específicamente al Valle del Mantaro.


[1] UNEP, WMO, UNCCD, Global Assessment of Sand and Dust Storms. United Nations Environment Programme, Nairobi, (2016).

[2] F. Briceño-Zuluaga, A. Castagna, J. A. Rutllant, V. Flores-Aqueveque, S. Caquineau, A. Sifeddine, F. Velazco, D. Gutierrez, J. Cardich, "Paracas dust storms: Sources, trajectories and associated meteorological conditions", Atmospheric Environment 165, 99-110 (2017).

[3] R. Estevan, L. Mona, N. Papagiannopoulos, J.C. Antuña, V. Cachorro, Á. de Frutos, "CALIPSO and sunphotometer measurements of Saharan dust events over Camagüey," Opt. Pura Apl. 47 (3) 189-196 (2014).

[4] C. Velasco-Merino, D. Mateos, C. Toledano, J. M. Prospero, J. Molinie, L. Euphrasie-Clotilde, R. González, V. E. Cachorro, A. Calle, A. M. de Frutos, "Impact of long-range transport over the Atlantic Ocean on Saharan dust optical and microphysical properties," Atmos. Chem. Phys. Discuss. in review (2017).

[5] WHO, Review of evidence on health aspects of air pollution. REVIHAAP Project, Technical Report; WHO Regional Office for Europe, Scherfigsvej 8, DK-2100 Copenhagen Ø, Denmark; 309 pp (2013).

[6] M. C. Fisher, G. L. Koenig, T. White, J. Taylor, "Pathogenic clones versus environmentally driven population increase: analysis of an epidemic of the human fungal pathogen Coccidiodes immitis". Journal of Clinical Microbiology 38, 807-813 (2000).

[7] J. Boreson, A. M. Diller, J. Peccia, Correlating bioaerosol load with PM2.5 and PM10cf concentrations: a comparison between natural desert and urban-fringe aerosols. Department of Civil and Environmental Engineering, Engineering Center and Department of Chemical and Materials Engineering, Arizona State University, Tempe, AZ (2004).

[8] R. Washington, G.F.S. Wiggs, Desert dust. In Arid Zone Geomorphology: Process, Form and Change in Drylands (ed. Thomas, D.S.G.) pp. 517-538. 3rd Edition. Wiley (2011).

[9] A. S. Goudie, "Dust storms: recent developments". Journal of Environmental Management 90, 89?94 (2009).

[10] P. Knippertz, Meteorological aspects of dust storms. In Mineral Dust: A key Player in the Earth System (ed. Knippertz, P. and Stuut, J.B.W.). pp.121-147. Springer (2014).

[11] A. T. Evan, J. Dunion, J. A. Foley, A. K. Heidinger, C. S. Velden, "New evidence for the relationship between Atlantic tropical cyclone activity and African dust outbreaks," Geophysical Research Letters 33, L19813 (2006).

[12] A. Nenes, B. Murray, A. Bougiatioti, Mineral dust in microphysical interactions with clouds. In Mineral Dust: A key Player in the Earth System (ed. Knippertz, P. and Stuut, J-B.W.). pp.287-325. Springer (2014).

[13] D. F. Escobar, Evaluación climatológica y sinóptica del fenómeno de vientos Paracas. Lima, Perú. Tesis para optar el título de Ingeniero Meteorológico, Universidad Nacional Agraria La Molina, 62 pp (1993).

[14] J. J. Quijano, Estudio numérico y observacional de la dinámica de Viento Paracas, asociado al transporte eólico hacia el océano frente a la costa de Ica-Perú. Lima - Perú: Universidad Peruana Cayetano Heredia. MSc Thesis, 151p. (2013).

[15] B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. F. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, "AERONET ? A federated instrument network and data archive for aerosol characterization," Remote Sens. Environ. 66, 1-16 (1998).

[16] B. N. Holben, D. Tanré, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. S. Schafer, B. Chatenet, F. Lavenu, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karneli, N. T. O'Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, "An emerging groundbased aerosol climatology: Aerosol optical depth from AERONET", J. Geophys. Res. 106, 12067-12097 (2001).

[17] G. A. D'Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosol: Global Climatology and Radiative Characteristics. Hampton, Virginia: A Deepak Publishing Co., (1991).

[18] R. Vergaz, V. E. Cachorro, A. M. de Frutos, J. M. Vilaplana, B. A. de la Morena. "Columnar characteristics of aerosols by spectroradiometer measurements in the maritime area of the Cadiz Gulf (Spain)," Int. J. Climatol 25, 1781-1804 (2005).

[19] S. Verma, D. Prakash, P. Ricaud, S. Payra, J. L. Attié, M. Soni, "A New Classification of Aerosol Sources and Types as Measured over Jaipur, India." Aerosol and Air Quality Research 15, 985-993 (2015).

[20] C. Toledano, V. E. Cachorro, A. M. de Frutos, M. Sorribas, N. Prats, B. A. de la Morena, "Inventory of African desert dust events over the southwestern Iberian Peninsula in 2000?2005 with an AERONET Cimel Sun photometer," J. Geophys. Res., 112, D21201, (2007).

[21] V. E. Cachorro, M. A. Burgos, D. Mateos, C. Toledano, Y. Bennouna, B. Torres, A. M. de Frutos, A. Herguedas, "Inventory of African desert dust events in the north-central Iberian Peninsula in 2003-2014 based on sun-photometer-AERONET and particulate-mass-EMEP data," Atmos. Chem. Phys., 16, 8227-8248 (2016).

[22] R. R. Draxler, G. D. Rolph, HYSPLIT (Hybrid Single?Particle Trajectory), model access via NOAA ARL READY Website. NOAA Air Resources Laboratory, Silver Spring, MD (2003).

[23] C. Aybar, W. Lavado-Casimiro, A. Huerta, C. Fernández, F. Vega, E. Sabino, O. Felipe-Obando, Uso del Producto Grillado "PISCO" de precipitación en Estudios, Investigaciones y Sistemas Operacionales de Monitoreo y Pronóstico Hidrometeorológico. Nota Técnica 001 SENAMHI-DHI-2017, Lima-Perú (2017).

[24] M. A. Burgos, D. Mateos, V. E. Cachorro, C. Toledano, A. M. de Frutos, "Aerosol properties of mineral dust and its mixtures in a regional background of north-central Iberian Peninsula," Sci Total Environ 572, 1005-1019 (2016).

[25] N. T. O'Neill, Dubovik, O., Eck, T. F., "A modified Angstrom coefficient for the characterization of sub-micron aerosols", App. Opt., 40 (15), 2368-2374 (2001).

[26] N. T. O'Neill, T. F., Eck, A. Smirnov, B. N.Holben, S. Thulasiraman, "Spectral discrimination of coarse and fine mode optical depth", 108 (D17), 4559-4573, 10.1029/2002JD002975, (2003).

[27] D. Gutiérrez, I. Bouloubassi, A. Sifeddine, S. Purca, K. Goubanova, M. Graco, D. Field, L. Méjanelle, F. Velazco, A. Lorre, R. Salvatteci, D. Quispe, G. Vargas, B. Dewitte, L. Ortlieb, "Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid-twentieth century". Geophys. Res. Lett. 38, 1-6 (2011).

[28] W. J. Sydeman, M. García-Reyes, D. S. Schoeman, R. R. Rykaczewski, S. a Thompson, B. a Black, S. J. Bograd, "Climate change and wind intensification in coastal upwelling ecosystems," Sci. New York 345, 77-80 (2014).