An automatic wrapped phase gradient-based method for spherical aberration correction in Digital Holographic Microscopy

Un método automático basado en el gradiente de la fase envuelta para la corrección de la aberración esférica de fase en microscopía holográfica digital

By: A. C. Monaldi, G. G. Romero, A. V. Blanc, C. M. Cabrera

Main Information

Volume:
Vol.51-N3 / 2018 - Ordinario
Section:
Image Processing and Imaging Techniques
Pages:
49032:1-8
DOI:
http://doi.org/10.7149/OPA.51.3.49032
Type:
Research papers / Trabajos de investigación
Language:
English
Attachments:
Keywords:
phase curvature, digital holographic microscopy, Optical phase aberration, wrapped phase.

curvatura de fase, microscopía holográfica digital, aberración óptica de fase, fase envuelta.
PDF file download

Abstract

Most digital holographic microscopy architectures introduce a microscope objective in the object arm of the micro-interferometer in order to increase lateral resolution but, as a consequence, a spherical phase aberration arises. The phase distortion must be corrected to achieve reliable phase information linked to the microscopic object under study. In this work, we present a fast and simple numerical method for automatically compensate the phase curvature from the wrapped phase gradient of the reconstructed hologram. Since non-unwrapping methods are required, computational cost is significantly reduced. Furthermore, no additional holograms recording is needed and it does not require prior knowledge of the object or the setup. The method is experimentally demonstrated by a phase contrast imaging of a Pediastrum cell.


La mayoría de los montajes experimentales utilizados en microscopía holográfica digital introducen un objetivo de microscopio en el brazo objeto del micro-interferómetro con el objetivo de aumentar la resolución lateral; sin embargo, como consecuencia, aparece una aberración de fase esférica que debe corregirse para acceder al retardo de fase que experimenta es espécimen microscópico bajo estudio. En este trabajo se presenta un método rápido y simple para corregir numéricamente la curvatura de fase a partir del gradiente del mapa de fase envuelto del holograma reconstruido. Dado que no se requiere el empleo de métodos de desenvolvimiento de fase, los costos computacionales son notablemente reducidos. Adicionalmente, no se precisa del registro de hologramas adicionales, ni del conocimiento previo del objeto bajo estudio o del arreglo experimental. El método se demuestra experimentalmente a partir del holograma de una microalga del género Pediastrum.

References

[1] C. Mann, L. Yu, C.-M Lo and M. Kim, "High-resolution quantitative phase-contrast microscopy by digital holography", Opt. Express 13, 8693-8698 (2005).

[2] A. Doblas. D. Hincapie-Zuluaga, G. Saavedra, M. Martínez-Corral and J. García-Sucerquia, "Physical compensation of phase curvature in digital holographic microscopy by use of programmable liquid lens", App. Opt. 54 16, 5229-5233 (2015).

[3] E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms", Appl. Opt. 38, 6994 (1999).

[4] P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, "Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging" Appl. Opt. 42, 1938 (2003).

[5] T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, "Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram" Opt. Express 14, 4300 (2006).

[6] T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, "Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation", App. Opt. 45 (5), 851?863 (2006).

[7] Tristan Colomb, Frédéric Montfort, Jonas Kühn, Nicolas Aspert, Etienne Cuche, Anca Marian, Florian Charrière, Sébastien Bourquin, Pierre Marquet, and Christian Depeursinge, "Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy", J Opt Soc Am A 23, 3177-3190 (2006).

[8] J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, "Phase aberration compensation of digital holographic microscopy based on least squares surface fitting" Opt. Commun. 282, 3873-3877 (2009).

[9] Y. Wen, W. Qu, C. Cheng, Z. Wang, A. Anand, "Phase errors elimination in compact digital holoscope (CDH) based on a reasonable mathematical model" Pro. of SPIE 9302, 930207 (2015).

[10] L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, "Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram" Appl. Phys. Lett. 90, 041104 (2007).

[11] C. Zuo, Q. Chen, W. Qu, and A. Asundi, "Phase aberration compensation in digital holographic microscopy based on principal component analysis, Opt. Lett. 38, 1724-1726 (2013).

[12] J. Sun, Q. Chen, Y. Zhang, C. Zuo, "Optimal principal component analysis-based numerical phase aberration compensation method for digital holography" Opt- Lett 41 (6), 1293-1296 (2016).

[13] H. Cui, D. Wang, Y. Wang, J. Zhao and Y. Zhang, "Phase aberration compensation by spectrum centering in digital holographic microscopy", Opt. Commun. 284, 4152-4155 (2011).

[14] J. W. Goodman, Introduction to Fourier Optics, second ed., Mc Graw-Hill Companies, Inc., USA (1996).

[15] A. Monaldi, G. Romero, C. Cabrera, A. Blanc, E. Alanís, "Rolling Shutter Effect Aberration Compensation in Digital Holographic Microscopy", Opt. Commun 366, 94-98 (2016).