Optical frequency reference stabilized to Rb D2 transition controlled by FPGA lock-in module

Referencia de frecuencia óptica estabilizada a una transición D2 de Rubidio controlada por un módulo de lock-in desarrollado en FPGA

By: M. Luda, J. Codnia

Main Information

Vol.51-N1 / 2018 - Ordinario
Research Paper
ECDL, lock-in, Rubidium.

ECDL, lock-in, Rubidio.
PDF file download


Lock-in measurement is frequently used for tunable laser wavelength stabilization in metrology, spectroscopy atomic physics and quantum optics labs. In particular, wavelength stabilization to atomic transitions is used to build optical frequency references. In this work we present the development of a stabilization module build using FPGA (Field Programmable Gate Array) technology for modulating at f frequency and lock-in demodulating on f and 3f frequencies. The module is economic, versatile and can be remotely controlled using a Free Software platform. We tested the system performance stabilizing a tunable External Cavity Diode Laser (ECDL) to a Rubidium (Rb) hyperfine transition, achieving an optical frequency standard deviation of 100 kHz, equivalent to an stability of 2.6 10-10.

La modulación y demodulación lock-in es utilizada con frecuencia para la estabilización de la longitud de onda de emisión de un láser sintonizable en laboratorios de metrología, espectroscopia, física atómica y óptica cuántica. En particular, la estabilización a una transición atómica particular es utilizada para generar patrones de frecuencia óptica de referencia. En este trabajo se presenta el desarrollo de un módulo de estabilización con tecnología de electrónica programable FPGA (del inglés, Field Programmable Gate Array) que permite realizar la modulación a frecuencia f y demodulación lock-in en frecuencias f y 3f. El módulo es económico, versátil y se puede controlar remotamente usando una plataforma de Software Libre. Se probó el desempeño del sistema estabilizando un láser sintonizable por cavidad externa (ECDL, del inglés External Cavity Diode Laser) a una de las transiciones hiperfinas del Rubidio (Rb), logrando una desviación estándar en la frecuencia óptica del orden de los 100 kHz, equivalentes a una estabilidad 2.6 10-10.


[1] Ye, Cunyun, Tunable External Cavity Diode Lasers. Texas A & M University, USA: World Scientific Publishing Co. Pte. Ltd.

[2] Nasim, H., Jamil, Y. "Recent advance(2004).ments in spectroscopy using tunable diode lasers," Laser Physics Letters, 10(4), 43001. (2013).

[3] Mroziewicz, B. "External cavity wavelength tunable semiconductor lasers - a review," Opto-Electronics Review, 16(4), 347-366. (2008).

[4] Mantz, A. W. "A review of spectroscopic applications of tunable semiconductor lasers," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 51(13), 2211-2236 (1995).

[5] Wieman, C. E., Hollberg, L. "Using diode lasers for atomic physics," Review of Scientific Instruments, 62(1), 1-20 (1991).

[6] Siddons, P., Adams, C. S., Ge, C., Hughes, I. G. "Absolute absorption on rubidium D lines: comparison between theory and experiment," Journal of Physics B: Atomic, Molecular and Optical Physics, 41(15) (2008).

[7] Hinkley, E. D. "High-resolution infrared spectroscopy with a tunable diode laser," Applied Physics Letters, 16(9), 351-354 (1970).

[8] Poschinger, U. G. Quantum Optics Experiments in a Microstructured Ion Trap. Universitat Ulm. Retrieved from https://www.quantenbit.physik.uni-mainz.de/files/2015/11/pub_phd_Poschinger2011.pdf (2010).

[9] Hilico, L., Felder, R., Touahri, D., Acef, O., Clairon, A., Biraben, F. "Metrological features of the rubidium two-photon standards of the BNM-LPTF and Kastler Brossel Laboratories," The European Physical Journal Applied Physics, 4(2), 219-225. (1998).

[10] Tetu, M., Cyr, N., Villeneuve, B., Theriault, S., & Breton, M. "Toward the realization of a wavelength standard at 780," IEEE, 248-249. (1990).

[11] Affolderbach, C., Droz, F., Mileti, G. "Experimental demonstration of a compact and high-performance laser-pumped Rubidium gas cell atomic frequency standard," IEEE Transactions on Instrumentation and Measurement, 55(2), 429-435 (2006).

[12] Luda, M., Codnia, J., Azcárate, M. L. "Espectroscopia de la línea d 2 del rubidio mediante un diodo láser realimentado con cavidad externa," Anales AFA, 25(2), 84-87 (2014).

[13] Ma, W., Yin, W., Dong, L., Wang, L., Li, C., Jia, S. "High-Sensitivity Detection of Methane Near 6106 cm -1 Using Tunable External-Cavity Diode Laser," Japanese Journal of Applied Physics, 44(4A), 1961-1965 (2005).

[14] Schulz, S. A. Scalable Microchip Ion Traps for Quantum Computation. Universitat Ulm. Retrieved from https://www.quantenbit.physik.uni-mainz.de/files/2015/11/pub_phd_Schulz2009.pdf (2009).

[15] Black, E. D. "An introduction to Pound-Drever-Hall laser frequency stabilization," American Journal of Physics, 69(1), 79-87 (2001).

[16] Fox, R. W., Oates, C. W., Hollberg, L. W. "Stabilizing diode lasers to high-finesse cavities," Experimental Methods in the Physical Sciences Vol. 40, pp. 1-46 (2003).

[17] Saliba, S. D., Scholten, R. E. "Linewidths below 100 kHz with external cavity diode lasers," Applied Optics, 48(36), 6961 (2009).

[18] Hawthorn, C. J., Weber, K. P., Scholten, R. E. "Littrow configuration tunable external cavity diode laser with fixed direction output beam," Review of Scientific Instruments, 72(12), 4477-4479 (2001).

[19] Saliba, S. D., Junker, M., Turner, L. D., & Scholten, R. E. "Mode stability of external cavity diode lasers," Applied Optics, 48(35), 6692-700 (2009)

[20] de Labachelerie, M., assedat, G. "Mode-hop suppression of Littrow grating-tuned lasers," Applied Optics, 32(3), 269 (1993).

[21] Nilse, L., Davies, H. J., Adams, C. S. "Synchronous tuning of extended cavity diode lasers: the case for an optimum pivot point," Applied Optics, 38(3), 548-553 (1999).

[22] Führer, T., Walther, T. "Extension of the mode-hop-free tuning range of an external cavity diode laser based on a model of the mode-hop dynamics," Optics Letters, 33(4), 372-374 (2008).

[23] Dutta, S., Elliott, D. S., Chen, Y. P. "Mode-hop-free tuning over 135 GHz of external cavity diode lasers without antireflection coating," Applied Physics B, 106(3), 629-633 (2012).

[24] Erickson, C. J., Van Zijll, M., Doermann, G., Durfee, D. S. "An ultrahigh stability, low-noise laser current driver with digital control," Review of Scientific Instruments, 79(7), 73107 (2008).

[25] MacAdam, K. B., Steinbach, A., Wieman, C. "A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb," American Journal of Physics, 60(12), 1098-1111 (1992).

[26] Dong, L., Yin, W., Ma, W., Jia, S. "A novel control system for automatically locking a diode laser frequency to a selected gas absorption line,". Measurement Science and Technology, 18(5), 1447. (2007).

[27] Blair, D. P., Sydenham, P. H. "Phase sensitive detection as a means to recover signals buried in noise," Journal of Physics E: Scientific Instruments, 8(8), 621-627 (2001).

[28] Wang, W., Major, A., Paliwal, J. "Grating-Stabilized External Cavity Diode Lasers for Raman Spectroscopy - A Review," Applied Spectroscopy Reviews, 47(2), 116-143 (2012).

[29] Steck, D. Rubidium 87 D Line Data v1.6. Los Alamos. Extraído de http://steck.us/alkalidata (2003).

[30] Steck, D. Rubidium 85 D Line Data. Los Alamos. Extraído de http://steck.us/alkalidata (2003).