Power fluctuations by longitudinal modes coupling in diode-pumped intracavity-doubled Nd:YVO4 microchip lasers

Fluctuaciones de potencia debidas al acoplamiento de modos longitudinales en láseres microchip de Nd:YVO4 bombeados por diodo y doblados en frecuencia

By: P. Puyuelo Valdés, S. Jarabo

Main Information

Vol.51-N1 / 2018 - Ordinario
Quantum and nonlinear optics
Educational Paper
Diode-pumped laser, microchip cavity, second-harmonic generation, sum-frequency generation, green problem.

Láser bombeado por diodo, cavidad microchip, generación de segundo armónico, suma de frecuencias, green problem.
PDF file download


Power fluctuations in a diode-pumped intracavity-doubled Nd:YVO4 microchip laser have been analysed. Their relationship with the coupling of several longitudinal modes has been experimentally demonstrated. Although second-harmonic power is generated by the nonlinear crystal, the effect of sum-frequency generation is also involved. This effect produced 9 spectral peaks at 532 nm when 5 longitudinal modes at 1064 nm were oscillating simultaneously.

Se han analizado las fluctuaciones periódicas de potencia que aparecen en un láser microchip de Nd:YVO4 doblado en frecuencia, demostrando que se deben a la oscilación simultánea de varios modos longitudinales. Se ha mostrado que, además del doblado de frecuencia, también se produce el efecto de suma de frecuencias, observando hasta 9 máximos espectrales en 532 nm cuando oscilan simultáneamente 5 modos longitudinales en 1064 nm.


[1] http://www.crystalaser.com/catalog.pdf

[2] W. P. Risk, T. R. Gosnell, A. V. Nurmikko, Compact blue-green lasers. Cambridge, Cambridge University Press (2003).

[3] J. B. Gruber, M. E. Hills, T. H. Allik, C. K. Jayasankar, J. R. Quagliano, F. S. Richardson, "Comparative analysis of Nd3+ (43/2) energy-levels in 4 garnet hosts", Phys Rev B 41, 7999-8012 (1990).

[4] J. A. Koningstein, J. E. Geusic, "Energy levels + crystal-field calculations of neodymium in yttrium aluminium garnet", Phys Rev 136, A711-A716 (1964).

[5] P. P. Yaney, L. G. DeShazer, "Spectroscopic studies and analysis of laser states of Nd3+ in YVO4", J Opt Soc Am 66, 1405-1414 (1976).

[6] O. Svelto, Principles of lasers. New York, Plenum Press (1998).

[7] A. Yariv, Optical electronics in modern communications: Second-harmonic generation and parametric oscillation. Oxford University Press (1997).

[8] W. Cheng, S. Zhao, Z. Zhuo, X. Zhang, Y. Wang, "Modeling of laser-diode side-pumped continuous wave Nd:YAG/KTP green laser", Opt Laser Eng 47, 169-172 (2009).

[9] Y. F. Chen, T. M. Huang, C. L. Wang, L. J. Lee, S. C. Wang, "Theoretical and experimental studies of single-mode operation in diode pumped Nd:YVO4/KTP green laser: influence of KTP length", Opt Comm 152, 319-323 (1998).

[10] T. Baer, "Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers", J Opt Soc Am B 3, 1175-1180 (1986).

[11] B. V. Zhdanov, G. P. Andersen, R. J. Knize, "Frequency doubled diode laser pumped Nd:YVO4 microchip laser", Am J Phys 68, 282-286 (2000).

[12] C. Lavieja, S. Jarabo, "Láser de helio-neón: prácticas de laboratorio sobre láser e interacción luz-materia - Helium-Neon laser: laboratory experiments on laser and light-matter interaction", Opt Pura Apl 44, 347-359 (2011).

[13] W. Holgado, I. J. Sola, E. Conejero, S. Jarabo, L. Roso, "Q-switching in a neodymium laser", Eur J Phys 33, 265-278 (2012).

[14] M. Jackson, D. Bauen, J. E. Hasbun, "Investigation of laser fundamentals using a helium-neon laser", Eur J Phys 22, 211-218 (2001).