Modeling of an optoelectronic system for data coding using orbital angular momentum of light

Modelado de un sistema optoelectrónico para la codificación de datos usando el momento angular orbital de la luz

By: J. Cuevas Cely, C.H. Acevedo, Y. Torres-Moreno

Main Information

Vol.51-N1 / 2018 - Ordinario
Fiber Optics and Optical Communications
Research Paper
Orbital angular momentum of a light, data multiplexing, spatial light modulator, retarder-rotor model.

Momento angular orbital de la luz, codificación de datos, modulador especial de luz, modelo retardador rotor.
PDF file download


This paper shows the experimental and theoretical results obtained for encoding data using light beams with different values of orbital angular momentum. Light beams with orbital angular momentum were generated using holographic masks with different values of topological charge, an displayed using a transmission spatial light modulator. Furthermore, we showed the results obtained for the characterization of the spatial light modulator in the amplitude-coupled regime by using the retarder-rotor model.

El presente trabajo muestra los resultados experimentales y teóricos obtenidos para la codificación de datos utilizando haces luminosos con diferentes valores de momento angular orbital. Los haces luminosos con momento angular orbital fueron generados utilizando mascaras holográficas con diferentes valores de carga topológica, y desplegadas dinámicamente empleando un modulador espacial de luz por transmisión. Además se muestran los resultados obtenidos para la caracterización del modulador espacial de luz en el régimen acoplado en intensidad usando el modelo retardador-rotor.


[1] U. Efron, Spatial light modulator technology: Materials, devices, and applications (Optical science and engineering), New York, CRC Press (1994).

[2] J. Liu and J. Wang, "Polarization-insensitive PAM-4-carrying free- space orbital angular momentum (OAM) communications," Opt. Express, 24, p. 4258-4269, (2016).

[3] S. Rout and S. Sonkusale, "Wireless multi-level terahertz amplitude modulator using active metamaterial-based spatial light modulation," Opt. Express, 24, pp. 14618-14631, (2016).

[4] Y. Zhao and J. Wang, "High-base vector beamencoding/decoding for visible-light communications," Opt. Lett., 40, N° 21, pp. 4843-4846, (2015).

[5] F. Sinjab y et al, "Tissue diagnosis using power-sharing multifocal Raman micro-spectroscopy and auto-fluorescence imaging," Biomed. Opt. Express, 7, pp. 2993-3006, (2016).

[6] F. Wang et Al., "Controlled light field concentration through turbid biological membrane for phototherapy," Biomed. Opt. Express, 6, pp. 2237-2245, (2015).

[7] P. Gao and G. Ulrich Nienhaus, "Confocal laser scanning microscopy with spatiotemporal structured illumination," Opt. Lett, 41, pp. 1193-1196, (2016).

[8] N. Matsumoto et Al., "Correction of depth-induced sphericalaberration for deep observation using two-photon excitation fluorescence microscopy with spatial light modulator; Aberration-free three- dimensional multiphoton imaging of neuronal activity at kHz rates," Biomed. and Opt. Express, 6, pp. 2575-2587, (2015).

[9] R. Kelner and J. Rosen, "Methods of Single-Channel Digital Holography for Three-Dimensional Imaging," IEEE Trans. Ind. Informatics, 12, pp. 220-230, (2015).

[10] T. Kreis, "3-D Display by Referenceless Phase Holography," IEEE Trans. Ind. Informatics, 12, pp. 685-693,(2016).

[11] E. Lueder, Liquid crystal displays, New York, Jonh wiley and Sons (2010).

[12] R. Chen, Liquid crystal displays, New Jersey, Jonh wiley and Sons (2011).

[13] C. Soutar and K. Lu, "Determination of the physical properties of an arbitrarytwisted-nematic liquid crystal cell," Opt. Engineering, 33, pp. 2704-2712, (1994).

[14] V. Duran, "Equivalent retarder-rotor approach to on state twisted nematic liquid crystals displays," Journ.of Apl. Physics, 99, pp. 113101-113106, (2006).

[15] C. Cuevas-Cely, C. Acevedo and Y. Torres-Moreno, "Global characterization of a nematic liquid crystal display LCX038ARA using the retarder-rotor model in the modulation amplitude regime coupled,"2017 J. Phys.: Conf. Series, 786, n° N012009, pp1-4, (2017).

[16] R. M. A. Azzam and N. M. Bashara, "Ellipsometry and polarized light," Amsterdam: Elsevier, (1987).

[17] R. E. Beth, "Mechanical Detection and Measurement of the Angular Momentum of Light," Phys Rev, 50, pp. 115-125, (1936).

[18] L. Allen et Al, "Instrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam," Phys. Rev. Lett, 88, pp. 3601-3605, (2002).

[19] M. J. Padgett and A. M. Yao, "Orbital angular momentum: origins, behavior and applications 3," Advances in Optics and Photonics, 2, pp. 161-204, (2012).

[20] C. H. Acevedo Cáceres, "Análisis Teórico-Experimental de un Haz con Momento Angular Orbital Entero y No Entero," Tesis de Maestría en Física, Universidad Industrial de Santander, (2012).

[21] L. Janicijevic and S. Topuzoski, "Fresnel and Franhoufer diffraction of a Gaussian laser beam by fork- shaped gratings," J. Opt. Soc. Am. A, 25, pp. 2659-2669, (2008).

[22] N. R. Heckenberg et Al, "Laser beams with phase singularities," Optics and Quantum electronics, 24, pp. S951-S962, (1992).

[23] E. Santamato, "Photon orbital angular momentum: Problems and," Fortschr. Phys, 52, , pp. 1141- 1153, (2004).

[24] C. F. Díaz, Y. Torres and C. H. Acevedo, "Superposition of two optical vortices with opposite integer or non-integer orbital angular momentum Superposición de dos vórtices óptico opuestos con momento angular orbital entero o no entero," Ingeniería e Investigación, 36 , pp. 79- 84, (2016).

[25] N. Heckenberg, R. Mcdu_, C. Smith, H. Rubinsztein and M. Wegener, "Laser beams with singularities," Opt. and Quan. Electronics, 24, S951-S962 (1992).

[26] Edmund-Optics and uEye, "USB 2.0 Cameras", User's manual, (2008).