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ABSTRACT: 

Different ways to accelerate adiabatic processes in cold atom physics and atomic state preparation 
are reviewed. The invariant-based inverse engineering approach is applied to trap expansions and 
contractions, and to atomic transport. Berry’s Hamiltonian is applied to produce fast versions of 
adiabatic passage methods. 

Keywords: Adiabatic methods, invariants, expansions and transport of atoms, third principle. 

RESUMEN: 

Se resumen distintas maneras de acelerar procesos adiabáticos en la física de átomos fríos y en la 
preparación de estados atómicos. Se aplica un método inverso basado en invariantes a expansiones y 
contracciones de trampas y al transporte atómico. También se describen versiones rápidas de los 
métodos de paso adiabático basadas en un Hamiltoniano propuesto por Berry. 
Palabras clave: Adiabatic methods, invariants, expansions and transport of atoms, third principle. 
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1. Introduction 
An “adiabatic process” in quantum mechanics is a 
slow change of Hamiltonian parameters that 
keeps the populations of the instantaneous 
eigenstates constant. These processes are 
frequently used to drive or prepare states in a 
robust and controllable way, and have also been 
proposed to solve complicated computational 
problems, but they are, by definition, slow. A 
natural objective is to find “shortcuts to 
adiabaticity”, i.e., to cut down the time to arrive at 
the same final state, possibly up to phase factors, 
either by designing optimal adiabatic pathways, 
or by admitting transient excitations in the 
“instantaneous basis” that diagonalizes the 
Hamiltonian. Several works have recently 
proposed different ways to achieve this goal for 
general or specific cases. One of the early 
applications considered was particle transport 
without heating, see [1] and references therein. 
Another important case is frictionless harmonic 
trap compressions or expansions for state 
preparation. They were first addressed with 
“bang-bang” (piecewise constant frequency) 
methods [2]. Other route is to design by inverse 
engineering techniques a time dependent 
frequency for which the expanding modes 
associated with Lewis-Riesenfeld invariants [3] 
take the state from the initial to the final potential 
configuration without transitions [4,5]. This has 
been implemented experimentally to decompress 
87Rb cold atoms in a harmonic magnetic trap [6]. 
The extension to Bose-Einstein condensates may 
be carried out with a variational ansatz [7] and 
has been realized experimentally as well [8]. 

Invariant-based inverse engineering has been 
also proposed to cool mechanical resonators [9], 
and indeed can be also applied to design efficient 
transport [1]. Much of this review is devoted to 
invariant-based inverse engineering: section 2 
sets the general formalism, sections 3 and 4 deal 
with expansions, and section 5 with transport. 

A different approach to shortcuts to 
adiabaticity is due to Berry [10]. He has proposed 
a Hamiltonian ℋ(𝑡) for which the adiabatic 
approximation of the state evolution under a 
time-dependent reference Hamiltonian 𝐻0(𝑡) 
becomes the exact dynamics with ℋ(𝑡). This has 
been applied at least at a formal level to spins in 
magnetic fields [10], harmonic oscillators [5], or 
to speed up adiabatic state-preparation methods 
such as Rapid Adiabatic Passage (RAP), 
Stimulated Rapid Adiabatic Passage (STIRAP) and 
its variants [11]. Section 6 summarizes this 
application. 

  

2. Inverse invariant methods 
Lewis and Riesenfeld derived a simple relation 
between the solutions of the Schrödinger 
equation of a system with time-dependent 
Hamiltonian and the eigenstates of the 
corresponding invariants [3]. They paid special 
attention to the time-dependent harmonic 
oscillator and its invariants quadratic in position 
and momentum, which are related to earlier 
work by Ermakov on the classical oscillator. 
Lewis and Leach found, in the framework of 
classical mechanics, the general form of the 
Hamiltonian compatible with invariants 
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quadratic in momentum [12], including non 
harmonic potentials. This is the result of interest 
to us here, together with the corresponding 
quantum results by Dhara and Lawande [13]. In 
this Section we shall state the main concepts and 
equations. 

A one-dimensional Hamiltonian with an 
invariant which is quadratic in momentum must 
have the form 𝐻 = 𝑝2 2𝑚⁄ + 𝑉(𝑞, 𝑡),1

𝑉(𝑞, 𝑡) = −𝐹(𝑡)𝑞 +
𝑚
2
𝜔2(𝑡)𝑞2

+
1

𝜌(𝑡)2
𝑈 �

𝑞 − 𝛼(𝑡)
𝜌(𝑡)

�, 

 with the 
potential [12,13] 

(1) 

𝜌, 𝛼, 𝜔 and 𝐹 are arbitrary functions of time that 
satisfy two auxiliary equations 

𝜌̈ + 𝜔2(𝑡)𝜌 =
𝜔0
2

𝜌3
, (2) 

𝛼̈ + 𝜔2(𝑡)𝛼 =
𝐹(𝑡)
𝑚

, (3) 

with 𝜔0 constant. Their physical interpretation 
depends on the application as explained below. 
The quadratic dynamical invariants, up to a 
constant factor, are given by 

𝐼 =
1

2𝑚
[𝜌(𝑝 −𝑚𝛼̇) −𝑚𝜌̇(𝑞 − 𝛼)]2

+
1
2
𝑚𝜔0

2 �
𝑞 − 𝛼
𝜌

�
2

+ 𝑈 �
𝑞 − 𝛼
𝜌

�, 

(4) 

and verify 

𝑑𝐼
𝑑𝑡

=
𝜗𝐼(𝑡)
𝜗𝑡

+
1
𝑖ℏ

[𝐼(𝑡),𝐻(𝑡)] = 0, (5) 

so that 𝑑
𝑑𝑡

= 〈𝜓(𝑡)|𝐼(𝑡)|𝜓(𝑡)〉 = 0, for any wave 
function 𝜓(𝑡) that evolves with the Hamiltonian 
𝐻. The invariants are useful in different ways. For 
example we may expand 𝜓(𝑡) in terms of 
constant coefficients 𝑐𝑛 and eigenvectors 𝜓𝑛 of 𝐼, 

𝜓(𝑡) = �𝑐𝑛𝑒𝑖𝛼𝑛𝜓𝑛(𝑞, 𝑡)
𝑛

, (6) 

𝐼(𝑡)𝜓𝑛(𝑞, 𝑡) = 𝜆𝑛𝜓𝑛(𝑞, 𝑡), (7) 

where the 𝜆𝑛 are time-independent eigenvalues 
of the invariant. The spectrum of 𝐼 may be 
discrete and/or continuous, so 𝜓𝑛 may have 
continuum normalization or be normalized to 

                                                 
1 q and p will denote operators or numbers, and the context 
should clarify their meaning 

one as in most applications discussed here. The 
phases 𝛼𝑛 satisfy [3,13] 

ℏ
𝑑 𝛼𝑛
𝑑𝑡

= 〈𝜓𝑛 �𝑖ℏ
𝜗
𝜗𝑡
− 𝐻�𝜓𝑛〉, (8) 

𝛼𝑛 = −
1
ℏ
� 𝑑𝑡′ �

𝜆𝑛
𝜌2

+
𝑚(𝛼̇𝜌 − 𝛼𝜌)̇2

2𝜌2
� .

𝑡

0
 (9) 

The 𝜓𝑛 are in practice obtained as [13] 

𝜓𝑛(𝑞, 𝑡) =

= 𝑒
𝑖𝑚
ℏ �𝜌̇𝑞2 2𝜌⁄ +(𝛼̇𝜌−𝛼𝜌)̇𝑞

𝜌 � 𝜙𝑛 �
𝑞 − 𝛼
𝜌 �

𝜌1 2⁄ , 
(10) 

with (𝑞 − 𝛼)/𝜌 ∶= 𝜎 , from the solutions 𝜙𝑛(𝜎) 
(normalized in 𝜎-space) of the auxiliary 
stationary Schrödinger equation 

�− ℏ2

2𝑚
𝜗2

𝜗𝜎2
+

1
2
𝑚𝜔0

2𝜎2 + 𝑈(𝜎)� 𝜙𝑛 =
= 𝜆𝑛𝜙𝑛 

(11) 

The basic strategy of invariant-based inverse 
engineering methods is to design the auxiliary 
functions 𝜌 and 𝛼 first to achieve desired 
objectives, and deduce the Hamiltonian 
afterwards. In most applications so far the key 
point is to control the boundary conditions of the 
auxiliary functions and their time derivatives at 
initial and final times. In particular, they may be 
set so that the eigenvectors of 𝐻 and 𝐼 coincide at 
initial and final times, and the process produces 
no final excitation. It is however not adiabatic in 
the usual sense, as excitations in the 
instantaneous basis at intermediate times are 
allowed. 

 

3. Fast expansions 
Performing fast expansions of trapped atoms 
without losses or vibrational excitation is 
important, for example to reduce velocity 
dispersion and collisional shifts in spectroscopy 
and atomic clocks, to reach extremely low 
temperatures unaccessible by standard cooling 
techniques or, in experiments with optical 
lattices, to broaden the atomic cloud before 
turning on the lattice. Trap contractions are also 
common to prepare the state. For a harmonic 
oscillator trap we may consider these expansion 
or contraction processes by setting  
 𝛼 = 𝑈 = 𝐹 = 0. Then Eq. (3) does not play any 
role and the important auxiliary equation is the 
Ermakov equation (2). Moreover 𝜌 is 
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proportional to the standard deviation of the 
“expanding (or contracting) modes” 𝑒𝑖𝛼𝑛𝜓𝑛. 

Let us discuss an expansion process from 
𝜔(0) = 𝜔0 to 𝜔�𝑡𝑓� = 𝜔𝑓. The treatment for 
contractions is very similar. By choosing 𝜌(0) =
1, 𝜌̇(0) = 0, 𝐻(0) and 𝐼(0) commute and have 
common eigenfunctions, at 𝑡 = 0. 𝜌̈(0) = 0 holds 
as well, consistent with the Ermakov equation. At 
the final time 𝑡𝑓 we impose 𝜌�𝑡𝑓� = 𝛾 =
�𝜔0/𝜔𝑓�

1/2, 𝜌�𝑡𝑓� = 0, 𝜌̈�𝑡𝑓� = 0. The 
consequence is that the expanding mode is an 
instantaneous eigenvector of 𝐻 at 𝑡 = 0 and 𝑡𝑓. 
This is so regardless of the form of 𝜌(𝑡) in 
between. In practice one chooses a functional 
form to interpolate between these two times, 
with enough flexibility to satisfy the imposed 
boundary conditions. A simple option is the 
polynomial ansatz  

𝜌(𝑡) = �𝑎𝑗

5

𝑗=0

𝑡𝑗 , (12) 

where the coefficients are determined by solving 
the equations set by the boundary conditions, 

𝜌(𝑡) = 6(𝛾 − 1)𝑠5 − 15(𝛾 − 1)𝑠4
+ 10(𝛾 − 1)𝑠3 + 1. 

(13) 

Here 𝑠 = 𝑡/𝑡𝑓. 

The next step is to solve for 𝜔(𝑡) in the 
Ermakov equation (2). This procedure poses in 
principle no fundamental lower limit to 𝑡𝑓, which 
could be arbitrarily small. There are of course 
practical limitations, and two warnings: the first 
one is that for short enough 𝑡𝑓, 𝜔(𝑡) may become 
purely imaginary at some 𝑡 [4], which 
corresponds to a parabolic repeller configuration; 
the second one is that the energy required may 
be too high, as analyzed in detail in the following 
section. 

 

4. Transient energy excitation in 
shortcuts to adiabaticity for the 
time dependent harmonic oscillator 

In this section we shall examine the energy “cost” 
of shortcut processes; more precisely, their 
transient excitation energies [14]. Our central 
study case is the expansion (or compression) of a 
harmonic oscillator, which is a basic model for 
many operations in any cold atoms laboratory. 
One may expect the transient system energy and 

the time of the process to be “conjugate”, i.e., an 
increase of the former when decreasing the later, 
but the details of this relation, and the role played 
by other parameters defining the process (such 
as initial and final frequencies) have to be 
clarified for fundamental reasons and for the 
applications. Clearly, the energy excitation will 
set limits to the possible speed-up. Actual traps 
are only approximately harmonic so large 
transient energies will imply perturbing effects of 
anharmonicities and thus undesired excitations 
of the final state, or even atom loss. 

The transient excitation energy is also 
important to quantify the principle of 
unattainability of zero temperature, first 
enunciated by Nernst. It is usually formulated as 
the impossibility to reduce the temperature of 
any system to the absolute zero in a finite 
number of operations, and identified with the 
third law of thermodynamics although this is 
sometimes disputed. Kosloff and coworkers [2] 
have restated the unattainability principle as the 
vanishing of the cooling rate in quantum 
refrigerators when the temperature of the cold 
bath approaches zero, and quantify it by the 
scaling law relating cooling rate and cold bath 
temperature. We shall examine the consequences 
of the transient energy excitation on the 
unattainability principle at two levels, namely, for 
a single, isolated expansion, and considering the 
expansion as one of the branches of a quantum 
refrigerator cycle. 

A lower bound for the time-averaged energy 
of the n-th expanding mode is found by calculus 
of variations [14], 

ℬ𝑛 =
(2𝑛 + 1)ℏ

2𝜔0𝑡𝑓2
��𝐵2 − 𝜔0

2𝑡𝑓2� − 2𝜔0𝑡𝑓 � 

                �× �arctanh �
𝐵2+𝐵−𝜔02𝑡𝑓

2

𝜔0𝑡𝑓
��� − 

                �− �arctanh � 𝐵
𝜔0𝑡𝑓

���,                                   (14) 

such that 𝐸𝑛��� ≥ ℬ𝑛. Here 𝐵 = −1 + �𝛾2 +
𝜔0
2𝑡𝑓2�

1/2. When the final frequency 𝜔𝑓 is small 
enough to satisfy 𝑡𝑓 ≪ 1/�𝜔0𝜔𝑓, and 𝛾 ≫ 1, the 
lower bound has the asymptotic form 

ℬ𝑛 ≈
(2𝑛 + 1)ℏ

2𝜔𝑓𝑡𝑓2
, (15) 

A consequence of this is 
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𝑡𝑓 ≥ �
(2𝑛 + 1)ℏ

2𝜔𝑓 𝐸𝑛���
. (16) 

If in Eq. (16) 𝐸𝑛��� is limited by some maximal value, 
because of anharmonicities or a finite trap depth, 
the scaling is fundamentally the same as for bang-
bang methods [2], and leads to a cooling rate 
𝑅 ∝ 𝑇𝑐

3/2 in an inverse quantum Otto cycle, 
although an opportunity is offered to improve the 
proportionality factor by increasing the allowed 
𝐸𝑛���. This dependence had been previously 
conjectured to be a universal dependence 
characterizing the unattainability principle for 
any cooling cycle [15]. The present results 
provide strong support for the validity of this 
conjecture within the set of processes defined 
exclusively by time-dependent frequencies and 
call for further testing and study. 

Independently of the participation of the 
harmonic trap expansion as a branch in a 
refrigerator cycle, we may apply the previous 
analysis on a single expansion by assuming that 
the initial and final states are canonical density 
operators characterized by temperatures 𝑇0 and 
𝑇𝑓 , related by 𝑇𝑓 = �𝜔𝑓/𝜔0�𝑇0 for a population-
preserving process. For a parabolic potential 
expansion, the unattainability of a zero 
temperature can be thus reformulated as follows: 
The transient excitation energy becomes infinite 
for any population-preserving and finite-time 
process if the final temperature is zero (which 
requires 𝜔𝑓 = 0). This excitation energy has to be 
provided by an external device, so there remains 
a fundamental obstruction to reach 𝑇𝑓 = 0 in a 
finite time, in the form of the need for a source of 
infinite power. 

The standard deviation can also be studied 
[14]. The dominant dependences of the time 
averages found numerically scale on 𝜔𝑓 and 𝑡𝑓 in 
the same way as the average energy. These 
dependences differ from the ones in the 
Anandan-Aharonov relation [16]  

∆𝐻����𝑡𝑓 ≥
ℎ
4

, (17) 

where 

∆𝐻���� =
∫ ∆𝐻(𝑡)𝑑𝑡𝑡𝑓
0

𝑡𝑓
. (18) 

The AA bound, although correct, is not tight. 

We have considered first simple processes in 
which the only external manipulation consists in 
shaping 𝜔(𝑡). As shown in [14] one could design 
even faster processes by adding terms to the 
harmonic oscillator Hamiltonian [10], but their 
physical implementation remains a challenge. 

 

5. Fast transport 
A key element for controlling the states and 
dynamics of cold neutral atoms and ions is their 
efficient transport by moving the confining trap. 
In spite of the broad span of conditions, heating 
mechanisms, transport distances (from microns 
to tens of centimeters), transport times, and 
accelerations that can be found, there are 
common elements that allow for a rather generic 
theoretical treatment as the one presented in [1] 
and summarized here. Transport should ideally 
be fast, lossless, and lead to a final state as close 
as possible (“faithful”) to the initial one, up to 
global phase factors, in the transporting trap 
frame. 

As done for expansions, we may use the 
dynamical invariants associated with the 
Hamiltonian of an atom in a one dimensional 
moving trap to inverse engineer the trap motion 
and perform fast atomic transport without final 
vibrational heating. The atom is driven non-
adiabatically through a shortcut to the result of 
adiabatic, slow trap motion. For harmonic 
potentials this only requires designing 
appropriate trap trajectories, whereas perfect 
transport in anharmonic traps may be achieved 
by applying an extra field to compensate the 
forces in the rest frame of the trap. The results 
can be extended to atom stopping or launching. 
The limitations due to geometrical constraints, 
energies and accelerations involved are analyzed 
in [1], as well as the relation to previous 
approaches (based on classical trajectories or 
“fast-forward” and “bang-bang” methods) which 
can be integrated in the invariant-based 
framework. 

Whereas trap expansions and contractions 
imply a time dependent  function [4], a large 
family of transport problems may be described 
by taking 

𝜌(𝑡) = 1, 𝜔2(𝑡) = 𝜔0
2, (19) 
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so the auxiliary Eq. (2) plays no role and only Eq. 
(3) is relevant. We shall assume that the 
conditions (19) hold from now on, and consider 
two main reference cases. 

5.1 Main cases 

(i) Rigid harmonic oscillator driven by the 
“transport function” 𝑞0(𝑡) (“harmonic transport” 
for short). Suppose that a harmonic trap is moved 
from 𝑞0(0) at time 𝑡 = 0 to 𝑑 = 𝑞0(𝑡𝑓) at a time 
𝑡𝑓. In Eq. (1) this corresponds to 

𝐹 = 𝑚𝜔0
2𝑞0(𝑡), 𝜔(𝑡) = 𝜔0, 𝑈 = 0. (20) 

Adding to 𝑉 the irrelevant time dependent global 
term 𝑚𝜔0

2𝑞02/2, the trap potential can be written 
as a moving harmonic oscillator 𝑚𝜔0

2[𝑞 −
𝑞0(𝑡)]2/2, 

𝐻 =
𝑝2

2𝑚
+ 𝑚𝜔0

2[𝑞 − 𝑞0(𝑡)]2/2, (21) 

and 𝛼 may be identified with a classical trajectory 
𝑞𝑐. Eq. (3) becomes 

𝑞̈𝑐 + 𝜔0
2(𝑞𝑐 − 𝑞0) = 0. (22) 

In this case 𝜆𝑛 = 𝐸𝑛 = (𝑛 + 1/2)ℏ𝜔0, and the 
transport mode 𝑒𝑖𝛼𝑛𝜓𝑛 takes the form  

𝑒𝑖𝛼𝑛𝜓𝑛 = exp �−
𝑖
ℏ
�𝐸𝑛𝑡 + �

𝑚𝑞̇𝑐2

2
𝑑𝑡′

𝑡

0
�� 

exp �
𝑖𝑚𝑞̇𝑐𝑞
ℏ

�𝜙𝑛(𝑞 − 𝑞𝑐), 

(23) 

Efficient transport may be engineered by 
designing first an appropriate classical trajectory 
𝑞𝑐(𝑡), from which the trap motion trajectory 
𝑞0(𝑡) is deduced via Eq. (22). 

A variant of this case is vertical transport with 
a gravity force, so that 𝐹 = 𝑚𝜔0

2𝑞0 − 𝑚𝑔 and Eq. 
(22) becomes 

𝑞̈𝑐 + 𝜔0
2(𝑞𝑐 − 𝑞0) = −𝑔. (24) 

It is also possible to design stopping or launching 
processes without losses or heating apart from 
pure rest-to-rest transport [1]. 

A major practical concern in all these 
applications is to keep the harmonic 
approximation valid. This may require an 
analysis of the actual potential in each case and of 
the excitations taking place along the non-
adiabatic transport process. Without performing 
such detailed analysis, the feasibility of the 
approach for a given transport objective set by 
the pair 𝑑, 𝑡𝑓 can be estimated simply by 

comparing lower excitation bounds. These are 
obtained using calculus of variations as discussed 
before for expansions. Writing the average 
potential energy for a given transport mode as 
〈𝑉(𝑡)〉 = (𝑛 + 1 2⁄ ) + 𝐸𝑃 we find [1] 

𝐸𝑃��� ≥
6𝑚𝑑2

𝑡𝑓4𝜔02
. (24) 

This bound describes the relevant dependences, 
as shown by numerical comparisons with actual 
time-averaged energies for polynomial 
trajectories, and sets a rather strong 𝑡𝑓−4 scaling, 
compare this with the milder dependence on 𝑡𝑓−2 
of the time-averaged transient energy in 
invariant-based inverse-engineered expansion 
processes [14]. 

(ii) Arbitrary-trap driven transport with 
compensating force (“compensating force 
approach" for short). Now, in Eq. (1) 

                                     𝜔 = 𝜔0 = 0,                           (26) 

                                         𝐹 = 𝑚𝑞̈0.                            (27) 

In this case the trap potential 𝑈[𝑞 − 𝑞0(𝑡)] is 
arbitrary (in particular it could be harmonic), and 
it is rigidly displaced along 𝑞0(𝑡), so that 𝛼 
 in Eq. (3) may be now identified with the 
transport function 𝑞0. In addition to 𝑈, there is a 
compensating time dependent linear potential 
term −𝑚𝑞𝑞̈0 in 𝐻, 

             𝐻 = 𝑝2 2𝑚⁄ −𝑚𝑞𝑞̈0 + 𝑈(𝑞 − 𝑞0).          (28) 

The corresponding force compensates exactly the 
inertial force due to the trap motion in the rest 
frame of the trap, in such a way that the wave 
function in that frame is not modified up to a time 
dependent global phase factor. This Hamiltonian 
has been proposed by Mashuda and Nakamura 
following a very different “fast-forward” scaling 
technique [17]. 

Inverse engineering in this case is based on 
choosing the boundary conditions for 𝑞0 [1]. 

 

6. Accelerating adiabatic passage in 
two and three level atoms 

There are two major routes for manipulating the 
state of a quantum system with interacting fields: 
resonant pulses, or adiabatic methods such as 
“Rapid” Adiabatic Passage (RAP), Stimulated 
Raman Adiabatic Passage (STIRAP), and their 
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variants. In general simple fixed-area resonant 
pulses may be fast if they are intense enough, but 
also unstable with respect to errors or 
fluctuations of the parameters, whereas adiabatic 
passage is slow but robust. For many applications 
the ideal method should be fast and robust, two 
requirements that are particularly demanding if 
quantum computing is to become feasible. Pulse 
sequences may be more stable than single pulses, 
but their use is limited by technical reasons. In 
NMR, composite pulses are being superseded by 
adiabatic passage methods, which have also been 
very successful in chemical reaction dynamics, 
laser cooling, atom optics, metrology, 
interferometry, or cavity quantum electro-
dynamics. When robustness is the primary 
concern, they are quite sufficient, and have as 
well become basic operations for quantum 
information processing. If speed is also 
important, however, the limitations may be 
severe. Given the difficulties of composite pulses, 
it is natural to look for robustness and high 
operation rates by shortening the duration of 
adiabatic methods. A shortcut to adiabatic 
passage [11] (“SHAPE” hereafter), which is not 
only fast but remarkably stable, may be found 
using the “transitionless quantum driving” 
algorithm proposed by Berry [10]. The specific 
applications we shall discuss is the speeded-up 
version of (2-level) Rapid Adiabatic Passage 
(RAP). 3-level systems and STIRAP are worked 
out in [11], and variants such as fractional RAP or 
fractional STIRAP, and multilevel schemes may 
be treated similarly. 

The transitionless quantum driving algorithm 
[10] provides Hamiltonians ℋ(𝑡) for which the 
adiabatic approximation for the time-dependent 
wavefunction evolving with a reference 
Hamiltonian 𝐻0(𝑡) becomes exact. The simplest 
Hamiltonian, 𝐻1(𝑡), steers the dynamics along the 
instantaneous eigenstates |𝜆𝑛�(𝑡)⟩� of 𝐻0(𝑡) 
without transitions among them and without 
phase factors, formally in an arbitrary time, 

                         𝐻1(𝑡) = 𝑖ℏ∑ | �𝜗𝑡𝜆𝑛⟩�𝑛 ⟨�𝜆𝑛| �.              (29) 

Concerning the populations, the addition of 𝐻0 is 
possible, but not necessary, since it only affects 
the phases. 𝐻1 may thus supplement 𝐻0, when 
ℋ = 𝐻1, or substitute it, if we take ℋ = 𝐻0 + 𝐻1. 
The physical feasibility of 𝐻1 has to be examined 
in each system. For example, when H0 describes a 
particle in a time-dependent harmonic potential, 

𝐻1 becomes a non-local interaction [5]. For a 
particle with spin in a time dependent magnetic 
field, 𝐻1 becomes a time-dependent magnetic 
field [10]. For the atomic two- and three-level 
systems, 𝐻1 will involve auxiliary laser or 
microwave interactions. The optional addition of 
𝐻0 will imply different physical implementations 
[11]. 

The technique known as Rapid Adiabatic 
Passage inverts the population of two-levels, | �1⟩� 
and | �2⟩�, by sweeping the radiation slowly through 
resonance. This broad spread method originated 
in Nuclear Magnetic Resonance but is used in 
virtually all fields where 2-level systems may be 
controlled by external interactions. The term 
“rapid” may sound contradictory here. It refers to 
the case in which the frequency sweep is shorter 
than the life-time of spontaneous emission and 
other relaxation times. 

We shall formulate 𝐻0, 𝐻1, or ℋ in a peculiar 
interaction picture so they will carry an I 
superscript, to distinguish them from 
Schrödinger picture Hamiltonians (with 𝑆 
subscript). This also applies to wave functions. To 
set 𝐻0𝐼  let us assume a semiclassical description of 
the (electric dipole) interaction with the electric 
field E. Using the rotating wave approximation 
(RWA), the Hamiltonian for a laser interaction 
with linear polarization in x-direction is 
𝐻𝑆 = (ℏ 2⁄ )�| �2⟩�⟨�1| �Ω𝑅𝑒−𝑖𝜔𝐿𝑡 + | �1⟩�⟨�2| �Ω𝑅𝑒𝑖𝜔𝐿𝑡 +
𝜔0(| �2⟩�⟨�2| � − | �1⟩�⟨�1| �)], with R real. In a laser-
adapted interaction picture based on a time 
dependent ℎ0 = ℏ(𝜔𝐿(𝑡) 2⁄ )(| �2⟩�⟨�2| � − | �1⟩�⟨�1| �), the 
dynamics of the wave function 𝜓𝐼(𝑡) =
𝑒𝑖ℎ0𝑡 ℏ⁄ 𝜓𝑆(𝑡) is governed by the Hamiltonian 
𝐻0𝐼 = 𝑒𝑖ℎ0𝑡 ℏ⁄ �𝐻𝑆 − ℎ0 − 𝑡ℎ0̇�𝑒−𝑖ℎ0𝑡 ℏ⁄ , where the 
dot denotes time derivative.  

Using | �1⟩� = �1
0�, | �2⟩� = �0

1�, 

                     𝐻0𝐼(𝑡) = ℏ
2
�−∆(𝑡) Ω𝑅(𝑡)
Ω𝑅(𝑡) ∆(𝑡) �,              (30) 

where ∆(𝑡) = 𝜔0 − 𝜔𝐿 − 𝑡𝜔̇𝐿 is the effective 
detuning, controlled by a change in the carrier 
frequency or an alteration of the Bohr frequency 
by Zeeman or Stark shifts. Note the inverse 
relation, 𝜔𝐿 = 𝜔0 − 1/𝑡 ∫ ∆(𝑡′)𝑑𝑡′𝑡

0 . The 
instantaneous eigenvectors are 

   | �𝜆−(𝑡)⟩� = cos[𝜃(𝑡)/2]| �2⟩� − sin[𝜃(𝑡)/2]| �1⟩�    (31) 

   | �𝜆+(𝑡)⟩� = sin[𝜃(𝑡)/2]| �2⟩� + cos[𝜃(𝑡)/2]| �1⟩�    (32) 
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with the mixing angle 𝜃(𝑡) = arccos[−∆(𝑡)/Ω(𝑡)] 
and eigenvalues 𝐸∓(𝑡) = ∓ℏΩ/2, where 
Ω = �∆2(𝑡) + Ω𝑅2(𝑡). If the adiabaticity condition 
1 2⁄ |Ω𝑎| ≪ |Ω(𝑡)|, where Ω𝑎 ≡ 𝜃̇ = �Ω𝑅(𝑡)∆̇(𝑡) −
Ω𝑅𝑡∆𝑡/Ω2, is satisfied, the state evolving from 
| �𝜓𝐼(𝑡𝑖)⟩� = | �𝜆∓(𝑡𝑖)⟩� follows the adiabatic 
approximation 

��𝜓±
𝐼 (𝑡)�� = exp �−

𝑖
ℏ
� 𝑑𝑡′
𝑡

𝑡𝑖
𝐸±(𝑡′)� | �𝜆∓(𝑡)⟩�, (33) 

whereas transitions will occur otherwise. 
Different adiabatic passage schemes correspond 
to Ω𝑅(𝑡) and ∆(𝑡) for which 𝜓±

𝐼  goes from one 
bare state to the other. The simplest one is the 
Landau-Zener scheme with constant Ω𝑅 and 
linear-in-time ∆. Regardless of the chosen 
scheme, 𝐻1𝐼(𝑡) takes here the form, using Eqs. 
(29) and (31), 

𝐻1𝐼(𝑡) =
ℏ
2
� 0 −𝑖Ω𝑎
𝑖Ω𝑎 0 �, (34) 

where (up to a phase factor) Ω𝑎 plays the role of 
the Rabi frequency for a fast-driving field. In 
principle 𝐻1𝐼(𝑡) drives the dynamics along the 
𝐻0𝐼(𝑡)-adiabatic path in arbitrarily short times, 
but there are practical limitations such as the 
laser power available. Moreover, a comparison 
with 𝐻0𝐼(𝑡)-dynamics is only fair if |Ω𝑎| is smaller 
or approximately equal to the peak Rabi 
frequency in the original laser setup. 
Independently of the scheme chosen and in a 
range of interaction times that break down the 
adiabaticity condition, it is remarkable that the 
dynamics can be driven along the 𝐻0𝐼(𝑡)-adiabatic 
path while fulfilling the inequalities|Ω𝑎| ≤ |Ω| ≤
|Ω0|. 

The physical meaning of the fast-driving term 
is clearer in the Schrödinger picture. For 
ℋ𝐼 = 𝐻0𝐼(𝑡) + 𝐻1𝐼(𝑡), then  

ℋ𝑆 = (ℏ 2⁄ )[(Ω𝑅 + 𝑖Ω𝑎)| �2⟩�⟨�1| � 𝑒−𝑖𝜔𝐿𝑡 +
(Ω𝑅 − 𝑖Ω𝑎)| �1⟩���2| 𝑒−𝑖𝜔𝐿𝑡 � + 𝜔0(| �2⟩�⟨�2| �  − | �1⟩�⟨�1| �)],  

                                                                                       (35) 

This implies two lasers with the same frequency, 
orthogonal polarization, and differently shaped 

time-dependent intensities. Instead, when 
ℋ𝐼 = 𝐻1𝐼(𝑡), ℋ𝑆 = (ℏ 2⁄ )�𝑖Ω𝑎| �2⟩�⟨�1| �𝑒−𝑖𝜔𝐿𝑡 −
𝑖Ω𝑎| �1⟩�⟨�2| �𝑒𝑖𝜔𝐿𝑡 + 𝜔𝐿(| �2⟩�⟨�2| � − | �1⟩�⟨�1| �)], which 
requires only one interaction and level shift 
engineering so that the effective detuning 
vanishes, ∆= 0. In this case the ±𝑖 factors in Eq. 
(34) can be dropped, which amounts to redefine 
the states with constant phase factors or to 
perform an axis rotation, without altering the 
population transfer. 
 

7. Conclusions 
We have reviewed recent techniques to 
accelerate quantum adiabatic processes. Some of 
them may be extended to more complicated 
systems, in particular to condensates [7,8] by 
using scaling relations, or to other interacting 
systems such as the Tonks-Girardeau gas. We are 
currently exploring further aspects, such as 
stability versus noise and perturbations, and 
effects of higher dimensions. A promising field is 
emerging with implications in fundamental and 
applied physics. 
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