SPALINET: The Spanish and Portuguese aerosol lidar network

Michaël Sicard(1,2,*), Manuel Pujadas(3), Lucas Alados-Arboledas(4), Roberto Pedrós(5), Juan Pedro Díaz(6), Carmen Córdoba-Jabonero(7), Alberto Requena(8), Adolfo Comerón(1), Francisco Rocadenbosch(1,2), Frank Wagner(9), José Rodrigues(10), José Maria Moreno(11)

(2) Institut d’Estudis Espacials de Catalunya - Centre de Recerca de l’Aeronàutica i de l’Espai / Universitat Politècnica de Catalunya, Barcelona, Spain.
(3) Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.
(4) Atmospheric Physics Group, Centro Andaluz de Medio Ambiente (CEAMA), Universidad de Granada, Spain.
(5) Department of Thermodynamics, Facultat de Física, Universitat de Valencia, Spain.
(6) Department of Fundamental Physics, Universidad de La Laguna, Spain.
(7) Atmospheric and Instrumentation Branch, Instituto Nacional de Técnica Aeroespacial (INTA), Torrejón de Ardoz, Spain.
(8) Department of Chemistry-Physics, Facultad de Química, Universidad de Murcia, Campus de Espinardo, Spain.
(9) Centro de Geofísica de Évora, Évora, Portugal.
(10) Grupo de Laseres y Plasmas, Universidad de Algarve, Faro Portugal.
(11) Department of Chemistry and Environment Engineering, Universidad Politécnica de Cartagena, Cartagena, Spain.

(*) Email: msicard@tsc.upc.edu S: miembro de SEDOPTICA / SEDOPTICA member

Recibido / Received: 16/11/2010. Versión revisada / revised versión: 10/02/2011. Aceptado / Accepted: 12/02/2011

ABSTRACT:
To extend and reinforce the action of the European network EARLINET (supported by the EARLINET-ASOS European project), a network of Spanish and Portuguese aerosol lidars (SPALINET) was created. In the first three years of the project six out of the ten systems have been successfully intercompared, seven elastic algorithms and six Raman algorithms have also been validated. Now the network focuses on future scientific objectives aiming at performing coordinated measurements. This paper presents the scientific context and a description of the network, as well as the results from the first three years of activity.

Key words: Aerosol Lidar, Network, Intercomparison Exercises.

RESUMEN:
A fin de extender y reforzar las acciones de la red Europea EARLINET (financiada por el proyecto europeo EARLINET-ASOS), se creó una red hispano-portuguesa de lidares de aerosoles (SPALINET). En los tres primeros años del proyecto seis de los 10 sistemas lidar han sido intercomparados con éxito, siete algoritmos de inversión elástica han sido validados, así como seis algoritmos de inversión Raman. En la actualidad la red está estableciendo nuevos objetivos científicos comunes a todos los miembros a fin de poder realizar medidas coordinadas. Este trabajo presenta el contexto científico y una descripción de SPALINET, así como los resultados de los tres primeros años de actividad.

Palabras clave: Lidar de Aerosoles, Red, Ejercicios de Intercomparación.
REFERENCES AND LINKS

1. Introduction

Satellite-based lidars (GLAS, on board of ICESAT (2003), CALIOP, on board of CALIPSO (2006)) offer a global coverage of the aerosol spatial distribution but with revisit times on the order of at least ten days. Coordinated terrestrial lidar networks offer simultaneously the temporal and vertical high resolution of each individual instruments and the spatial sampling of an extensive geographic zone.

EARLINET (European aerosol research lidar network to establish an aerosol climatology) [1] was created in May 2000. It has been endorsed since March 2006 by the coordinated action EARLINET-ASOS from the European Union and is currently totaling 27 stations. The main objective of EARLINET-ASOS is to improve the EARLINET infrastructure resulting in a better spatial and temporal coverage of the observations, continuous quality control, and fast availability of standardized data products. The lidars from EARLINET present a great variety of characteristics [2] and one of the specific objectives of EARLINET-ASOS is to optimize instruments and define advanced lidars. To concentrate their efforts onward this objective, the Spanish lidar community created in 2007 a Spanish lidar network. Since mid-2009 the network also includes two Portuguese lidar stations.

2. The Spanish and Portuguese aerosol lidar network

The Spanish and Portuguese aerosol lidar network (www.lidar.es/spalinet/en) is an initiative from the three Spanish groups involved in EARLINET-ASOS. It aims at promoting the use of lidar instruments and data among the Spanish and Portuguese scientific community [3]. The mains goals of the network are:

- Extend and reinforce the actions of EARLINET-ASOS;
- Form a nucleus for stimulating the Spanish and Portuguese lidar community;
- Promote the participation of new groups for improving the spatial coverage of aerosol vertical measurements on the Iberian Peninsula territory.

A total of 10 research centers or universities are participating:

- Universitat Politècnica de Catalunya (41.39N, 2.11E, Barcelona, BAR);
The main characteristics of the lidars involved in SPALINET are summarized in Table I and their geographical distribution is shown in Fig. 1.

Fig. 1. Geographical distribution of the lidars involved in SPALINET. Circles and squares indicate transportable and fixed systems, respectively. The black color indicates the systems involved in EARLINET.

Table I
Characteristics of the lidars involved in SPALINET

<table>
<thead>
<tr>
<th>Lidar stations</th>
<th>BAR</th>
<th>MAD</th>
<th>GRA</th>
<th>LLA</th>
<th>SCT</th>
<th>VAL</th>
<th>MUR</th>
<th>CAR</th>
<th>FAR</th>
<th>EVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lidar model</td>
<td></td>
</tr>
<tr>
<td>Lab.</td>
<td></td>
</tr>
<tr>
<td>Raymetrics LR321-D400</td>
<td></td>
</tr>
<tr>
<td>1064 – Elastic</td>
<td>160</td>
<td>-</td>
<td>110</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>1000</td>
<td>-</td>
<td>110</td>
<td>180</td>
</tr>
<tr>
<td>532 – Elastic</td>
<td>160</td>
<td>100</td>
<td>65(^a)</td>
<td>50</td>
<td>0.01(^b)</td>
<td>0.004</td>
<td>500</td>
<td>-</td>
<td>110</td>
<td>110(^c)</td>
</tr>
<tr>
<td>355 – Elastic</td>
<td>-</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>250</td>
<td>-</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td>266 – Elastic</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>110</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>390-399 – Elastic</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>255-290 – Elastic</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>607 – Raman</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>387 – Raman</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>407 – Raman</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>PRF (Hz)</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>2500</td>
<td>4600</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Scanning capability</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Overlap (km)</td>
<td>0.25</td>
<td>~0.4</td>
<td>0.3</td>
<td>~0.3</td>
<td>1.5</td>
<td>0.2-2</td>
<td>~0.3</td>
<td>1</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>Max range (km)</td>
<td>50</td>
<td>15</td>
<td>60-90</td>
<td>10</td>
<td>60</td>
<td>5</td>
<td>50</td>
<td>5</td>
<td>10</td>
<td>61</td>
</tr>
</tbody>
</table>

\(^a\) p and s polarization components are detected.

\(^b\) The center wavelength is 523 nm.

\(^c\) Total and cross polarization components are detected.
3. Results from the first three years

Table II summarizes all the intercomparison exercises performed so far and their results.

3.1 Intercomparison at the hardware level

So far, 6 systems have been intercompared successfully at the hardware level. One system (MUR) participated in an intercomparison field campaign but did not fulfill the quality criteria due to inherent acquisition slowness. The Murcia system will realize a new field campaign once the system’s acquisition module has been improved. The intercomparison of the last three systems (CAR, FAR and EVO) is planned for spring/summer 2010.

The intercomparison was made in terms of normalized distance, an indicator of signal similarity, and in terms of backscatter coefficient. The deviations of all optical coefficients intercompared (compared to the Barcelona system) fell within the maximum allowed values fixed by EARLINET [2]. More details about the successful intercomparisons can be found in Sicard et al. [4].

3.2 Intercomparison at the software level: elastic algorithm

All groups (except Cartagena and the Portuguese groups) inverted with their own algorithm the aerosol backscatter profiles at 355, 532, and 1064 nm from a set of profiles of simulated elastic lidar signals under two atmospheric conditions (cases) and three situations (stages).

The deviation of the inverted backscatter coefficient compared to the true value was less than 10 % in the more realistic stage (no information about the atmosphere was provided) and less than 1 % when the lidar ratio profiles were provided.

3.2 Intercomparison at the software level: Raman algorithm

Six groups performed the intercomparison of Raman algorithms during 2009. Preliminary results show that at 532 nm all algorithms are able to retrieve both extinction and backscatter coefficients with the accuracy fixed by EARLINET. At 355 the deviations respect to the solution are greater. The extinction can be fairly well retrieved in the PBL and in a lofted layer at 3.6 – 4 km. The backscatter coefficient is not so well retrieved: four of the algorithms do not fulfill the criteria fixed by EARLINET neither in the PBL, nor in the lofted layer.

3.3 Observational approach and future of spalinet

The activities of SPALINET are driven by common scientific objectives which cover fields such as aerosol aging, transport, radiative forcing, with a special emphasis on desert dust whose intrusions over the Canary Islands and the Iberian Peninsula are more frequent than ever.
SPALINET aims at acting as a single tool for performing coordinated measurements over the entire territory covered by the network or a part of it. Field campaigns can be fixed by the network’s own scientific objectives or in response to national or international projects.

In the present and in the near future some lidar stations of SPALINET are involved in EARLINET at a continental scale and in CALIPSO [5] Cal/Val exercises at a global scale.

In a shorter time frame some SPALINET lidar stations have been involved in EMEP [6] (European Monitoring and Evaluation Programme) and are currently taking part in the ChArMEX project [7] (Chemistry-Aerosol Mediterranean Experiment).

Acknowledgments

This work is supported by the MICINN (Spanish Ministry of Science and Innovation) and FEDER funds under the projects TEC2009-09106/TEC, and under the Complementary Action CGL2008-01330-E/CLI, CGL2009-08031-E/CLI and CGL2010-09225-E; by the Andalusian Regional Government through projects N° P06-RNM-01503 and P08-RNM-3568; by the European Union under the project EARLINET-ASOS (EU Coordination Action, contract n° 025991 (RICA)); and by the European Space Agency under the project 21487/08/NL/HE.